Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Bull Exp Biol Med ; 176(4): 442-446, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38488962

RESUMO

We performed a comparative study of the effects of X-ray irradiation and bleomycin on the mRNA levels of E-cadherin and tight junction proteins (claudin-3, claudin-4, claudin-18, ZO-2, and occludin) in an alveolar epithelial cell line L2. Irradiation decreased claudin-4 levels and increased occludin levels, while the levels of other mRNAs remained unchanged. Bleomycin increased the expression levels of all proteins examined except claudin-3. Irradiation and bleomycin have different effects on the expression level of intercellular junction proteins, indicating different reactions triggered in alveolar epithelial cells and a great prospects of further comparative studies.


Assuntos
Células Epiteliais Alveolares , Junções Íntimas , Células Epiteliais Alveolares/metabolismo , Junções Íntimas/metabolismo , Ocludina/genética , Ocludina/metabolismo , Claudina-4/metabolismo , Claudina-3/metabolismo , Bleomicina/farmacologia , Bleomicina/metabolismo , Junções Intercelulares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Células Epiteliais
2.
J Transl Med ; 22(1): 177, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369503

RESUMO

BACKGROUND: Human health is seriously threatened by antibiotic-induced intestinal disorders. Herein, we aimed to determine the effects of Autoinducer-2 (AI-2) combined with Lactobacillus rhamnosus GG (LGG) on the intestinal barrier function of antibiotic-induced intestinal dysbiosis neonatal mice. METHODS: An antibiotic-induced intestinal dysbiosis neonatal mouse model was created using antibiotic cocktails, and the model mice were randomized into the control, AI-2, LGG, and LGG + AI-2 groups. Intestinal short-chain fatty acids and AI-2 concentrations were detected by mass spectrometry and chemiluminescence, respectively. The community composition of the gut microbiota was analyzed using 16S rDNA sequencing, and biofilm thickness and bacterial adhesion in the colon were assessed using scanning electron microscopy. Transcriptome RNA sequencing of intestinal tissues was performed, and the mRNA and protein levels of HCAR2 (hydroxycarboxylic acid receptor 2), claudin3, and claudin4 in intestinal tissues were determined using quantitative real-time reverse transcription PCR and western blotting. The levels of inflammatory factors in intestinal tissues were evaluated using enzyme-linked immunosorbent assays (ELISAs). D-ribose, an inhibitor of AI-2, was used to treat Caco-2 cells in vitro. RESULTS: Compared with the control, AI-2, and LGG groups, the LGG + AI-2 group showed increased levels of intestinal AI-2 and proportions of Firmicutes and Lacticaseibacillus, but a reduced fraction of Proteobacteria. Specifically, the LGG + AI-2 group had considerably more biofilms and LGG on the colon surface than those of other three groups. Meanwhile, the combination of AI-2 and LGG markedly increased the concentration of butyric acid and promoted Hcar2, claudin3 and claudin4 expression levels compared with supplementation with LGG or AI-2 alone. The ELISAs revealed a significantly higher tumor necrosis factor alpha (TNF-α) level in the control group than in the LGG and LGG + AI-2 groups, whereas the interleukin 10 (IL-10) level was significantly higher in the LGG + AI-2 group than in the other three groups. In vitro, D-ribose treatment dramatically suppressed the increased levels of Hcar2, claudin3, and claudin4 in Caco-2 cells induced by AI-2 + LGG. CONCLUSIONS: AI-2 promotes the colonization of LGG and biofilm formation to improve intestinal barrier function in an antibiotic-induced intestinal dysbiosis neonatal mouse model.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Camundongos , Humanos , Animais , Animais Recém-Nascidos , Células CACO-2 , Função da Barreira Intestinal , Disbiose , Antibacterianos/farmacologia , Claudina-4/metabolismo , Ribose
3.
Radiat Res ; 201(1): 77-86, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38044712

RESUMO

Inflammatory response is one of the essential parts of various pathogenic mechanisms of radiation-induced salivary dysfunction. The effect of decreasing the levels of inflammatory cytokines on alleviating submandibular gland injuries after irradiation is unclear. This study aimed to explore the effect of the antibody against tumor necrosis factor-alpha, infliximab, on radiation-induced submandibular gland dysfunction in rats. Male Wistar rats received a single 20 Gy dose to the right submandibular gland region or sham irradiated. Meanwhile, the irradiated group was divided into infliximab treatment groups or untreated groups. Animals were euthanized at 1, 6, and 12 weeks postirradiation, and the irradiated submandibular gland was dissected for subsequent detection. Submandibular gland exposure caused obvious pathological changes. The increased levels of inflammatory cytokines, including tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6, represent an aggravated inflammatory response. The results of the western blot, reverse transcription-quantitative polymerase chain reaction, and immunofluorescence staining showed upregulated levels of claudin-1, claudin-3, and aquaporin 5 and downregulated levels of claudin-4. Moreover, nuclear factor kappa-B phosphorylation levels were also up-regulated. In subsequent experiments, we found that infliximab alleviated inflammatory response, up-regulated tumor necrosis factor-alpha, interleukin-1ß, and interleukin-6 levels, and improved claudin-1, claudin-3, claudin-4, and aquaporin 5 expression. Our results indicate that infliximab might improve the para-cellular pathway and trans-cellular pathway destruction by reducing the inflammatory.


Assuntos
Glândula Submandibular , Fator de Necrose Tumoral alfa , Ratos , Masculino , Animais , Ratos Wistar , Infliximab/farmacologia , Infliximab/uso terapêutico , Infliximab/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Glândula Submandibular/metabolismo , Glândula Submandibular/patologia , Aquaporina 5/metabolismo , Claudina-3/metabolismo , Claudina-1/metabolismo , Claudina-4/metabolismo , Interleucina-1beta , Interleucina-6
4.
Shanghai Kou Qiang Yi Xue ; 32(2): 126-131, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37153991

RESUMO

PURPOSE: To investigate the effect of outer membrane vesicles (OMVs) secreted by Fusobacterium nucleatum (F.n) on Claudin-4 of human oral keratinocytes (HOK) and oral epithelial barrier function. METHODS: Fusobacterium nucleatum was cultured under anaerobic conditions. The OMVs were extracted by dialysis and characterized by nanosight and transmission electron microscopy (TEM). HOK were stimulated with OMVs at different mass concentrations(0-100 µg/mL) for 12 h, and stimulated with 100 µg/mL OMVs for 6 h and 12 h respectively. The expression of Claudin-4 at gene and protein level was analyzed by RT-qPCR and Western blotting. Inverted fluorescence microscope was used to observe co-localization of HOK and OMVs and localization and distribution of Claudin-4 protein. Human oral epithelial barrier was constructed by Transwell apical chamber. Transepithelial electrical resistance(TER) of barrier was measured with a transmembrane resistance measuring instrument(EVOM2), and the permeability of the barrier was evaluated by transmittance of fluorescein isothiocyanate-dextran(FD-4). Statistical analysis was performed with GraphPad Prism 8.0 software package. RESULTS: Compared with the control group, the expression of Claudin-4 at protein and gene level in the HOK of OMVs stimulated group was significantly reduced (P<0.05), and immunofluorescence showed that the continuity of Claudin-4 fluorescence among cells was destroyed. OMVs stimulation decreased TER value of oral epithelial barrier(P<0.05) and increased the transmittance of FD-4(P<0.05). CONCLUSIONS: OMVs derived from Fusobacterium nucleatum may damage oral mucosal epithelial barrier function through inhibiting the expression of Claudin-4.


Assuntos
Fusobacterium , Mucosa Intestinal , Humanos , Claudina-4/genética , Claudina-4/metabolismo , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo
5.
Breast Cancer Res ; 25(1): 41, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059993

RESUMO

BACKGROUND: Cell adhesion is indispensable for appropriate tissue architecture and function in multicellular organisms. Besides maintaining tissue integrity, cell adhesion molecules, including tight-junction proteins claudins (CLDNs), exhibit the signaling abilities to control a variety of physiological and pathological processes. However, it is still fragmentary how cell adhesion signaling accesses the nucleus and regulates gene expression. METHODS: By generating a number of knockout and rescued human breast cell lines and comparing their phenotypes, we determined whether and how CLDN4 affected breast cancer progression in vitro and in vivo. We also identified by RNA sequencing downstream genes whose expression was altered by CLDN4-adhesion signaling. Additionally, we analyzed by RT-qPCR the CLDN4-regulating genes by using a series of knockout and add-back cell lines. Moreover, by immunohistochemistry and semi-quantification, we verified the clinicopathological significance of CLDN4 and the nuclear receptor LXRß (liver X receptor ß) expression in breast cancer tissues from 187 patients. RESULTS: We uncovered that the CLDN4-adhesion signaling accelerated breast cancer metabolism and progression via LXRß. The second extracellular domain and the carboxy-terminal Y197 of CLDN4 were required to activate Src-family kinases (SFKs) and the downstream AKT in breast cancer cells to promote their proliferation. Knockout and rescue experiments revealed that the CLDN4 signaling targets the AKT phosphorylation site S432 in LXRß, leading to enhanced cell proliferation, migration, and tumor growth, as well as cholesterol homeostasis and fatty acid metabolism, in breast cancer cells. In addition, RT-qPCR analysis showed the CLDN4-regulated genes are classified into at least six groups according to distinct LXRß- and LXRßS432-dependence. Furthermore, among triple-negative breast cancer subjects, the "CLDN4-high/LXRß-high" and "CLDN4-low and/or LXRß-low" groups appeared to exhibit poor outcomes and relatively favorable prognoses, respectively. CONCLUSIONS: The identification of this machinery highlights a link between cell adhesion and transcription factor signalings to promote metabolic and progressive processes of malignant tumors and possibly to coordinate diverse physiological and pathological events.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias de Mama Triplo Negativas , Humanos , Claudina-4/genética , Claudina-4/metabolismo , Receptores X do Fígado/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Claudinas/genética , Claudinas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral
6.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982569

RESUMO

Claudin-4 (CLDN4) is a key component of tight junctions (TJs) in epithelial cells. CLDN4 is overexpressed in many epithelial malignancies and correlates with cancer progression. Changes in CLDN4 expression have been associated with epigenetic factors (such as hypomethylation of promoter DNA), inflammation associated with infection and cytokines, and growth factor signaling. CLDN4 helps to maintain the tumor microenvironment by forming TJs and acts as a barrier to the entry of anticancer drugs into tumors. Decreased expression of CLDN4 is a potential marker of epithelial-mesenchymal transition (EMT), and decreased epithelial differentiation due to reduced CLDN4 activity is involved in EMT induction. Non-TJ CLDN4 also activates integrin beta 1 and YAP to promote proliferation, EMT, and stemness. These roles in cancer have led to investigations of molecular therapies targeting CLDN4 using anti-CLDN4 extracellular domain antibodies, gene knockdown, clostridium perfringens enterotoxin (CPE), and C-terminus domain of CPE (C-CPE), which have demonstrated the experimental efficacy of this approach. CLDN4 is strongly involved in promoting malignant phenotypes in many epithelial cancers and is regarded as a promising molecular therapeutic target.


Assuntos
Antineoplásicos , Neoplasias , Claudina-4/genética , Claudina-4/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo , Transdução de Sinais , Claudina-3/genética , Enterotoxinas/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
7.
Toxicol Lett ; 375: 8-20, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596350

RESUMO

The role of peroxisome proliferator activated receptor gamma (PPARγ) in the regulation of adipocyte differentiation has been well characterized. Besides adipose tissue, PPARγ is also highly expressed in the intestine. However, the functional role of PPARγ in the regulation of intestinal function still remains poorly understood. In the present study, we sought to understand the role of PPARγ activation on regulation of intestinal barrier function in intestinal porcine epithelial cells (IPEC-J2) and weaned piglets exposed to the mycotoxin, deoxynivalenol (DON). PPARγ activation by rosiglitazone and troglitazone, two pharmacological PPARγ ligands, increased the protein expression of tight junction proteins (TJP), claudin-3 and 4. PPARγ inhibition increased endocytosis of claudin-4 which was reversed by its activation with troglitazone. DON exposure decreased the protein expression of TJP, and also significantly suppressed PPARγ transcriptional activity. Interestingly, PPARγ activation reversed the reduction of claudin-3 and 4 caused by DON in vitro and in vivo. PPARγ activation also partially restored the transepithelial electrical resistance (TEER) and reduced the permeability of fluorescein isothiocyanate-dextran (FITC-dextran) that have been negatively impacted by DON. These effects were lost in the presence of a specific PPARγ antagonist or in PPARγ knockout cells, confirming the importance of PPARγ in the regulation of intestinal barrier function and integrity. Likewise, in weaned pigs exposed to DON, the PPARγ agonist pioglitazone mitigated the impaired villus-crypt morphology caused by DON. Therefore, pharmacological and natural bioactive compounds with PPARγ stimulatory activities could be effective in preventing DON-induced gut barrier dysfunction.


Assuntos
Enteropatias , PPAR gama , Suínos , Animais , PPAR gama/genética , PPAR gama/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Claudina-3/metabolismo , Troglitazona/farmacologia , Junções Íntimas , Células Epiteliais , Mucosa Intestinal/metabolismo , Proteínas de Junções Íntimas/metabolismo , Endocitose
8.
Tissue Barriers ; 11(4): 2138061, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280901

RESUMO

Previous data provided evidence for a critical role of desmosomes to stabilize intestinal epithelial barrier (IEB) function. These studies suggest that desmosomes not only contribute to intercellular adhesion but also play a role as signaling hubs. The contribution of desmosomal plaque proteins plakophilins (PKP) in the intestinal epithelium remains unexplored. The intestinal expression of PKP2 and PKP3 was verified in human gut specimens, human intestinal organoids as well as in Caco2 cells whereas PKP1 was not detected. Knock-down of PKP2 using siRNA in Caco2 cells resulted in loss of intercellular adhesion and attenuated epithelial barrier. This was paralleled by changes of the whole desmosomal complex, including loss of desmoglein2, desmocollin2, plakoglobin and desmoplakin. In addition, tight junction proteins claudin1 and claudin4 were reduced following the loss of PKP2. Interestingly, siRNA-induced loss of PKP3 did not change intercellular adhesion and barrier function in Caco2 cells, while siRNA-induced loss of both PKP2 and PKP3 augmented the changes observed for reduced PKP2 alone. Moreover, loss of PKP2 and PKP2/3, but not PKP3, resulted in reduced activity levels of protein kinase C (PKC). Restoration of PKC activity using Phorbol 12-myristate 13-acetate (PMA) rescued loss of intestinal barrier function and attenuated the reduced expression patterns of claudin1 and claudin4. Immunostaining, proximity ligation assays and co-immunoprecipitation revealed a direct interaction between PKP2 and PKC. In summary, our in vitro data suggest that PKP2 plays a critical role for intestinal barrier function by providing a signaling hub for PKC-mediated expression of tight junction proteins claudin1 and claudin4.


Assuntos
Desmossomos , Placofilinas , Humanos , Células CACO-2 , Moléculas de Adesão Celular/metabolismo , Claudina-4/metabolismo , Desmossomos/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Proteína Quinase C/metabolismo , RNA Interferente Pequeno/metabolismo
9.
Inflamm Res ; 72(1): 57-74, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36322182

RESUMO

BACKGROUND: Respiratory inflammation is the body's response to lung infection, trauma or hypersensitivity and is often accompanied by comorbidities, including gastrointestinal (GI) symptoms. Why respiratory inflammation is accompanied by GI dysfunction remains unclear. Here, we investigate the effect of lipopolysaccharide (LPS)-induced lung inflammation on intestinal barrier integrity, tight-junctions, enteric neurons and inflammatory marker expression. METHODS: Female C57bl/6 mice (6-8 weeks) were intratracheally administered LPS (5 µg) or sterile saline, and assessed after either 24 or 72 h. Total and differential cell counts in bronchoalveolar lavage fluid (BALF) were used to evaluate lung inflammation. Intestinal barrier integrity was assessed via cross sectional immunohistochemistry of tight junction markers claudin-1, claudin-4 and EpCAM. Changes in the enteric nervous system (ENS) and inflammation in the intestine were quantified immunohistochemically using neuronal markers Hu + and nNOS, glial markers GFAP and S100ß and pan leukocyte marker CD45. RESULTS: Intratracheal LPS significantly increased the number of neutrophils in BALF at 24 and 72 h. These changes were associated with an increase in CD45 + cells in the ileal mucosa at 24 and 72 h, increased goblet cell expression at 24 h, and increased expression of EpCAM at 72 h. LPS had no effect on the expression of GFAP, S100ß, nor the number of Hu + neurons or proportion of nNOS neurons in the myenteric plexus. CONCLUSIONS: Intratracheal LPS administration induces inflammation in the ileum that is associated with enhanced expression of EpCAM, decreased claudin-4 expression and increased goblet cell density, these changes may contribute to systemic inflammation that is known to accompany many inflammatory diseases of the lung.


Assuntos
Íleo , Inflamação , Pneumonia , Animais , Feminino , Camundongos , Claudina-4/metabolismo , Estudos Transversais , Molécula de Adesão da Célula Epitelial/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Pneumonia/induzido quimicamente , Íleo/patologia
10.
Sci Total Environ ; 857(Pt 2): 159561, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265643

RESUMO

Inhalation of large amounts of arsenic can damage the respiratory tract and may exacerbate the development of bacterial pneumonia, but the exact mechanism remains unclear. In this study, male Wistar rats were randomly divided into control, arsenic trioxide (16.0 µg/kg ATO), lipopolysaccharide (0.5 mg/kg LPS), and ATO combined with LPS (16.0 µg/kg ATO + 0.5 mg/kg LPS) groups. Blood and lung tissue samples were collected from each group 12 h after exposure. The results showed that exposure to ATO or LPS alone produced different effects on leukocytes and inflammatory factors, while combined exposure significantly increased serum interleukin-6, interleukin-10, lung water content, lung lavage fluid protein, and p38 protein phosphorylation levels. Alveolar interstitial thickening, alveolar membrane edema, alveolar type I and II cell matrix vacuolization, and nuclear pyknosis were observed in rats exposed to either ATO or LPS. More severe ultrastructural changes were found in the combined exposure group, and chromatin splitting was observed in alveolar type I cells. Lanthanum nitrate particles leaked from the alveolar vascular lumen in the ATO-exposed group, whereas in the combined exposure group, Evans Blue levels were increased and lanthanum nitrate particles were present in the lung parenchyma. Claudin-3 protein expression increased and claudin-4 expression decreased after ATO or LPS exposure, while claudin-18 expression was unchanged. The changes in claudin-3 and claudin-4 protein expression were further exacerbated by combined exposure. In conclusion, these results suggest that inhalation of ATO may exacerbate the development of bacterial pneumonia and that common mechanisms may exist to synergistically disrupt epithelial barrier integrity.


Assuntos
Arsênio , Lesão Pulmonar , Ratos , Masculino , Animais , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/induzido quimicamente , Arsênio/metabolismo , Claudina-4/metabolismo , Claudina-3/metabolismo , Ratos Wistar , Pulmão
11.
J Cancer Res Ther ; 19(Suppl 2): S800-S806, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38384059

RESUMO

BACKGROUND: Claudins are a clan of proteins that are the most important component of tight junctions. The claudin-4 expression has been linked to tumour cell invasion and progression in a variety of primary malignancies. Evaluation of lymphovascular density (LVD) correlates with tumour aggressiveness and may correlate with prognosis. D2-40 is a highly specific marker of lymphatic vessels. AIMS: To evaluate the claudin-4 expression in relation to LVD by D2-40 expression and with clinicopathological parameters in prostatic adenocarcinoma. SETTINGS AND DESIGN: Prospective study. MATERIALS AND METHODS: 39 cases of prostatic adenocarcinoma were taken, the D2-40 and claudin-4 immunohistochemical stains were performed and correlation was done with clinicopathological parameters. STATISTICAL ANALYSIS USED: Statistical analyses such as mean, median, standard deviation, Mann-Whitney U test, Fischer exact test, Spearman's rank-order correlation coefficient, Chi-square test and T-test were used. RESULTS: The claudin-4 expression was seen higher in cases with higher Gleason score but it was statistically non-significant (P = 0.778). The claudin-4 expression did not correlate with any clinicopathological parameters. LVD in the peritumoral area was significantly higher as compared to the intratumoral area (P = 0.005). Intratumoral LVD and perineural invasion were found to be statistically significant (P = 0.048). CONCLUSION: The claudin-4 expression may correlate with adverse prognostic parameters. Higher lymphatic vessels can be responsible for the higher metastatic potential of prostatic adenocarcinomas.


Assuntos
Adenocarcinoma , Vasos Linfáticos , Neoplasias da Próstata , Humanos , Masculino , Adenocarcinoma/patologia , Anticorpos Monoclonais Murinos/metabolismo , Biomarcadores Tumorais/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Imuno-Histoquímica , Linfangiogênese , Vasos Linfáticos/química , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Prognóstico , Estudos Prospectivos , Neoplasias da Próstata/patologia
12.
J Cancer Res Ther ; 18(6): 1771-1775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36412442

RESUMO

Background: In this study, the role of claudins in cancer progression was explored among breast cancer-affected women. Methodology: Two cohorts (discovery and validated) of breast cancer-affected women were used. In discovery cohort, 90 freshly excised breast tumor tissues along with adjacent cancer free specimens were collected at the time of surgery. These specimens were processed for RNA isolation and complementary DNA synthesis. After designing primers for claudin 3, claudin 4, and claudin 7, these sequences were synthesized from Macrogen, Korea. Claudin expression in respective tumors and controls was assessed using quantitative reverse transcription polymerase chain reaction. Any probable correlation of these molecules with various clinicopathological parameters was explored. For validation, a publicly available dataset of 2088 breast cancer patients was accessed. Claudin expression of these patients was analyzed for given clinical parameters and compared with earlier findings of discovery cohort. Results: Discovery cohort comprised 17% luminal A, 63% luminal B, 8% human epidermal growth factor receptor 2 enrich, and 12% triple-negative breast cancer tumor. High claudin 3 expression was significantly correlated with tumor size >2 cm and menopausal status. Claudin 7 expression was upregulated among poorly differentiated tumor patients. Both claudins 3/4 showed significant correlation with tumor grade, stage, size, and metastasis. Claudin-low subtype was also found in 18% of the cohort. Conclusion: Claudins impart a significant role in cell differentiation and disease progression. Hence, claudin cluster can be ascertained as the disease biomarkers for breast cancer.


Assuntos
Claudinas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Claudinas/genética , Claudinas/análise , Claudina-3/metabolismo , Imuno-Histoquímica , Biomarcadores Tumorais/metabolismo , Claudina-4/metabolismo , Progressão da Doença
13.
Acta Cir Bras ; 37(7): e370706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327405

RESUMO

PURPOSE: Abnormal activation of NOD-like receptor protein 3 (NLRP3) inflammasome can lead to the occurrence and progression of acute pancreatitis. This study investigated the protective effect of MCC950 on pancreatitis mice. METHODS: Eighteen mice were randomly divided into control group, severe acute pancreatitis (SAP) group and SAP+MCC950 group. Serum interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α (TNF-α) were measured by ELISA. Hematoxylin and eosin (HE) staining was used to evaluate the pathological damage. Western blotting was used to detect the expression of NLRP3 inflammasome and tight junction proteins in the small intestine and pancreas. RESULTS: MCC950 could reduce the levels of IL-6 and IL-1ß in SAP mice. After treatment with MCC950, the expression levels of NLRP3 inflammasome in the pancreas of SAP mice were significantly reduced and the pathological damage to the pancreas and intestine was alleviated. Compared with the control group, the expression of tight junction protein (ZO-1,occludin and claudin-4) in the intestinal mucosa of SAP mice was decreased, and the expression of claudin-4 and occludin were upregulated after MCC950 treatment. CONCLUSIONS: MCC950 can inhibit NLRP3 inflammasome activation and significantly reduce the inflammatory response and delay the process of pancreatitis. It has therapeutic potential in the treatment of acute pancreatitis.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pancreatite , Animais , Camundongos , Doença Aguda , Claudina-4/metabolismo , Inflamassomos/metabolismo , Interleucina-6 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ocludina/metabolismo , Pancreatite/tratamento farmacológico , Pancreatite/fisiopatologia
14.
Pharm Biol ; 60(1): 1981-1993, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36226770

RESUMO

CONTEXT: Many studies have explored new methods to cure acute lung injury (ALI); however, none of those methods could significantly change the high mortality rate of ALI. Shenfu is a Chinese traditional medicine that might be effective against ALI. OBJECTIVE: Our study explores the therapeutic potential of Shenfu in ALI. MATERIALS AND METHODS: Male C57BL/6 mice were assigned to control, lipopolysaccharide (LPS) (500 µg/100 µL per mouse), and LPS + Shenfu (30 mL/kg) groups. Shenfu (10 µL/mL) was added to LPS (10 µg/mL) treated MLE-12 cells for 48 h in vitro. Male C57BL/6 mice were divided into four groups: LPS, LPS + 3% dextran sulphate sodium (DSS), 3% DSS + Shenfu, and LPS + 3% DSS + Shenfu. RESULTS: Compared with the ALI group, Shenfu reduced wet/dry weight ratio (19.8%, 36.2%), and reduced the IL-2 (40.9%, 61.6%), IFN-γ (43.5%, 53.3%) TNF-α (54.1%, 42.1%), IL-6 (54.8%,70%), and IL-1ß (39.9%, 65.1%), reduced serum uric acid (18.8%, 48.7%) and creatinine (17.4%, 41.1%). Moreover, Shenfu enhanced cell viability (17.2%, 59.9%) and inhibited cell apoptosis (63.0%) and p38/ERK phosphorylation in in vitro cultured epithelial cells with LPS stimulation. Mechanistically, Shenfu mediated the protective effect by upregulating claudin-4 expression. In addition, Shenfu could protect against both lung and intestinal epithelial damage in acute gastrointestinal injury-exacerbated ALI. DISCUSSION AND CONCLUSIONS: Taken together, the results revealed the therapeutic effect and the underlying mechanism of Shenfu injection in an ALI in mouse model, indicating its clinical potential to treat patients with ALI.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Claudina-4/metabolismo , Creatinina , Sulfato de Dextrana , Medicamentos de Ervas Chinesas , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Ácido Úrico
15.
Front Immunol ; 13: 931871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211338

RESUMO

Cronobacter has attracted considerable attention due to its association with meningitis and necrotizing enterocolitis (NEC) in newborns. Generally, lipopolysaccharide (LPS) facilitates bacterial translocation along with inflammatory responses as an endotoxin; however, the pathogenicity of Cronobacter LPS and the strategies to alleviate the toxicity were largely unknown. In this study, inflammatory responses were stimulated by intraperitoneal injection of Cronobacter malonaticus LPS into Sprague-Dawley young rats. Simultaneously, Bacteroides fragilis NCTC9343 were continuously fed through gavage for 5 days before or after injection of C. malonaticus LPS to evaluate the intervention effect of B. fragilis. We first checked the morphological changes of the ileum and colon and the intestinal microbiota and then detected the generation of inflammatory factors, including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), and interleukin-10 (IL-10) and the expression of Toll-like receptor 4 (TLR4), occludin, claudin-4, and iNOs. The results indicated that C. malonaticus LPS exacerbated intestinal infection by altering gut microbe profile, tight junction protein expression, and releasing inflammatory factors in a time- and dose-dependent manner. Intriguingly, treatment with B. fragilis obviously diminished the pathological injuries and expression of TLR4 caused by C. malonaticus LPS while increasing gut microbes like Prevotella-9. We note that Shigella, Peptoclostridium, and Sutterella might be positively related to C. malonaticus LPS infection, but Prevotella-9 was negatively correlated. The results suggested that the intestinal microbiota is an important target for the prevention and treatment of pathogenic injuries induced by C. malonaticus LPS.


Assuntos
Cronobacter , Enterocolite Necrosante , Microbioma Gastrointestinal , Animais , Bacteroides fragilis , Claudina-4/metabolismo , Cronobacter/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Ocludina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Exp Cell Res ; 420(1): 113352, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108712

RESUMO

Staphylococcus aureus causes subclinical mastitis; lipoteichoic acid (LTA) from S. aureus causes mastitis-like adverse effects on milk production by mammary epithelial cells (MECs). Here, we investigated the early effects of LTA from S. aureus on mouse MECs using a culture model, in which MECs produced milk components and formed less permeable tight junctions (TJs). In MECs of this model, Toll-like receptor 2 (receptor for LTA), was localized on the apical membrane, similar to MECs in lactating mammary glands. LTA weakened the TJ barrier within 1 h, concurrently with localization changes of claudin 4. LTA treatment for 24 h increased αS1-casein and decreased ß-casein levels. In MECs exposed to LTA, the activation level of signal transducer and activator of transcription 5 (major transcriptional factor for milk production) was low. LTA activated signaling pathways related to cell survival (extracellular signal-regulated kinase, heat shock protein 27, and Akt) and inflammation (p38, c-Jun N-terminal kinase, and nuclear factor κB). Thus, LTA caused abnormalities in casein production and weakened the TJs by affecting multiple signaling pathways in MECs. LTA-induced changes in signaling pathways were not uniform in all MECs. Such complex and semi-negative actions of LTA may contribute to subclinical mastitis caused by S. aureus.


Assuntos
Mastite , Staphylococcus aureus , Animais , Caseínas/metabolismo , Caseínas/farmacologia , Claudina-4/metabolismo , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lactação/metabolismo , Lipopolissacarídeos/farmacologia , Glândulas Mamárias Animais , Mastite/metabolismo , Camundongos , Leite/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/farmacologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
17.
Food Funct ; 13(18): 9169-9182, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36069409

RESUMO

Milt is an underutilized fish processing by-product containing valuable nutrients for human health. Here, a gastrointestinal hydrolysate of degreased yellowtail (Seriola quinqueradiata) milt contained 70.6% arginine-rich protein, 20% nucleic acids, 7.1% minerals and 2.3% carbohydrates. Yellowtail milt hydrolysates (YMH) effectively attenuated the H2O2-induced burst of intracellular reactive oxygen species, plasma membrane impairment, loss of cell viability, interleukin 8 production and the expression of claudin-4 and occludin in Caco-2 cells with its protein fraction playing a greater antioxidant role than its nucleic acid fraction. YMH also significantly counteracted the tumor necrosis factor α- and interleukin 1ß-stimulated interleukin 8 production and cyclooxygenase-2 and inducible nitric oxide synthase expression in Caco-2 cells and inhibited the production of nitric oxide and proinflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 cells depending on its protein fraction, rather than its nucleic acid fraction. YMH and a positive drug 5-aminosalicylic acid were intragastrically administered to C57BL/6 mice daily for 7 days during and after 4-day dextran sodium sulphate exposure. Based on clinical signs, colon histopathology and biochemical analysis of colonic tight junction proteins, mucus compositions and goblet cells, YMH ameliorated mouse colitis symptoms and intestinal epithelial barrier dysfunction more effectively than 5-aminosalicylic acid. According to myeloperoxidase activity, proinflammatory cytokines and NF-κB, YMH and 5-aminosalicylic acid exerted equivalent inhibitory effects on colonic and systemic inflammation. Overall, YMH have considerable antioxidant and anti-inflammatory efficacies to maintain gut health.


Assuntos
Colite , Ácidos Nucleicos , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Arginina , Células CACO-2 , Claudina-4/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Ciclo-Oxigenase 2/metabolismo , Sulfato de Dextrana/efeitos adversos , Humanos , Peróxido de Hidrogênio/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/efeitos adversos , Mesalamina/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ácidos Nucleicos/efeitos adversos , Ocludina/metabolismo , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfatos , Fator de Necrose Tumoral alfa/metabolismo
18.
Nutrients ; 14(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145253

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with frequent relapsing inflammation in the colon. Whole grains have been promoted as healthy and sustainable foods; however, the use of whole gains in UC is inconclusive. The aim of this study was to investigate the effects of ethanol extracts of rice bran (RBE) and whole-grain adlay seeds (ADE) on inflammation, oxidative stress, and colonic damage in UC. Male C57BL/6JNarl mice were intra-rectal injected twice with 2,4-dinitrobenzene sulfonic acid to induce (day 0) and reactivate (day 21) UC. Control mice were fed AIN-93M diet (R group) and injected with a vehicle. UC mice were fed AIN-93M diet (UC group) supplemented with RBE (RBE group) or ADE (ADE group) for 21 days. The results showed that the UC group had an increased disease activity index, plasma interleukin (IL)-6 and glutathione levels, microscopic injury scores, and inflammatory cytokine and chemokine levels in the colon and decreased colonic claudin-4 compared to the R group. RBE and ADE supplementation significantly reduced UC-elevated plasma IL-6 and colonic glutathione and pro-inflammatory cytokines and a chemokine. In addition, RBE and ADE supplementation significantly decreased T-helper-cell-associated cytokines in the plasma and colon. Moreover, RBE supplementation increased colonic IL-10 and tight junction protein claudin-4 levels, and ADE supplementation alleviated diarrhea in UC mice. In conclusion, these results suggest that RBE and ADE may mitigate colonic inflammation, oxidative stress, and damage in UC relapse.


Assuntos
Coix , Colite Ulcerativa , Colite , Oryza , Animais , Claudina-4/metabolismo , Coix/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Etanol/metabolismo , Glutationa/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oryza/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Ácidos Sulfônicos , Grãos Integrais
19.
Cell Biol Int ; 46(11): 1852-1863, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35971749

RESUMO

CircSERPINA3 has been shown to be upregulated in laryngeal squamous cell carcinoma (LSCC); however, whether it regulates the development of LSCC and the specific molecular mechanism remains unclear, which is to be explored in this study. Expressions of circSERPINA3, miR-885-5p, and Malic enzyme 1 (ME1) in LSCC tissues or cell lines were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The regulation of circSERPINA3 on the biological behavior of LSCC cells was confirmed by loss and gain experiments (cell counting kit-8, transwell, and colony formation assay). The correlation between circSERPINA3/ME1 and miR-885-5p was predicted and confirmed by bioinformatics analysis, dual-luciferase reporter assay, and qRT-PCR. The effect of circSERPINA3/miR-885-5p axis on the biological behavior of LSCC cells and expressions of epithelial-mesenchymal transition-related proteins was confirmed by rescue experiments. CircSERPINA3 and ME1 was upregulated in LSCC tissues, whereas miR-885-5p was downregulated. MiR-885-5p was the target gene of circSERPINA3, whereas ME1 was the target gene of miR-885-5p. Silent circSERPINA3 suppressed viability, invasion, migration, colony formation, and expression of ME1, claudin-4, snail, and vimentin but elevated expression of miR-885-5p and E-cadherin, whereas overexpressed circSERPINA3 was the opposite. However, miR-885-5p inhibitor or mimic reversed the effects of silent circSERPINA3 or overexpressed circSERPINA3. Collectively, circSERPINA3 promotes proliferation, migration, and invasion of LSCC cells by targeting miR-885-5p.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Claudina-4/genética , Claudina-4/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Vimentina/metabolismo
20.
Biol Reprod ; 107(4): 984-997, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863769

RESUMO

The composition of cell contacts in the endometrium plays an important role in the process of embryo implantation and the establishment of pregnancy. In previous studies, we showed an induction of the tight junction protein claudin-3 in the developing decidua from day 6.5 of pregnancy onward. To evaluate the role of this specific claudin-3 distribution, we here evaluated the effect of an endometrial claudin-3 deletion in implantation and embryo development in claudin-3 knockout mice. Claudin-3 knockout mice were fertile but revealed a slightly reduced amount of implantation sites as well as of litter size. Though implantation sites showed morphologically regularly developed embryos and deciduas, depth of ectoplacental cone invasion was reduced in tendency compared to controls. The weight of the implantation sites on day 6.5 and 8.5 of pregnancy as well as the weight of the embryos on day 17.5 of pregnancy, but not of the placentas, was significantly reduced in claudin-3 knockout mice due to a maternal effect. This could be due to an impairment of decidualization as substantiated by a downregulation of the transcription of various decidua-associated genes in the early implantation sites of claudin-3 knockout mice. The fact that claudin-3 knockout mice are nevertheless fertile possibly may be compensated by the presence of other claudins like claudin-4 and claudin-10.


Assuntos
Decídua , Implantação do Embrião , Animais , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/metabolismo , Claudinas/genética , Claudinas/metabolismo , Decídua/metabolismo , Implantação do Embrião/genética , Endométrio/metabolismo , Feminino , Camundongos , Camundongos Knockout , Gravidez , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA